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Cometary Flows

Pierre Degond,1 Jose� L. Lo� pez,2 Fre� de� ric Poupaud,3 and
Christian Schmeiser4

Received December 13, 1998

A global existence theorem is presented for a kinetic problem of the form
�t f +v } {x f =Q( f ), f (t=0)= f0 , where Q( f ) is a simplified model wave�par-
ticle collision operator extracted from quasilinear plasma physics. Evaluation of
Q( f ) requires the computation of the mean velocity of the distribution f. There-
fore, the assumptions on the data are such that vacuum regions, where the mean
velocity is not well defined, are excluded. Also the initial data are assumed to
have bounded total energy. As additional results conservation laws for mass,
momentum, and energy are derived, as well as an entropy dissipation law and
the propagation of higher order moments.

KEY WORDS: Kinetic equation; wave�particle collision operator; cometary
flows; cosmic rays; quasilinear plasma theory; approximate solution; dispersive
lemma.

1. INTRODUCTION AND MAIN RESULTS

In this work we consider a kinetic initial value problem of the form

�t f +v } {x f =Q( f ) (1)

f (0, x, v)= f0(x, v) (2)
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where f (t, x, v) is the particle distribution function in the position-velocity
phase space R2d

% (x, v) at the time t>0, d�1 the dimension. The collision
operator is a simplified model from quasilinear plasma theory describing
wave-particle interaction in cometary flows:

Q( f )=Puf
( f )& f (3)

where Pu is a projection on the set of distribution functions isotropic
around the velocity u # Rd:

Pu( f )(v)=
1

|Sd&1| |Sd&1
f (u+|v&u| |) d| (4)

with |Sd&1| denoting the Lebesgue measure of the unit sphere Sd&1 in Rd.
The mass, momentum, and energy densities associated with f are given by

\f=|
Rd

f dv, mf=|
Rd

fv dv, Ef=|
Rd

f
|v| 2

2
dv (5)

Finally, the mean velocity and the specific internal energy are

uf=
mf

\f
, ef=

Ef

\f
&

|uf |2

2
=

1
\f

|
Rd

f
|v&uf |2

2
dv (6)

Note the nonlinearity of Q induced by the appearance of the mean velocity
uf in the projection. The Eqs. (1)�(6) are in dimensionless form. In par-
ticular, a relaxation time appearing in the dimensional version of the
collision operator has been used as reference time.

A mathematical treatment of this model has been started in refs. 4
and 5. More specifically, ref. 4 was devoted to the derivation of the equations
governing the macroscopic regime at the level of the Hilbert expansion. On
the other hand, in ref. 5 the results of ref. 4 were extended by carrying out
the Chapman�Enskog expansion. Also, the macroscopic behaviour for
small perturbations of a global equilibrium has been analyzed in the
framework of a diffusive scaling of the kinetic model.

For the physical background we refer, for example, to the series of
papers refs. 8, 14, 15, and 16. Indeed, in 1988 Earl, Jokipii and Morfill
presented in ref. 8 an ``extended transport equation'' for cosmic rays includ-
ing new effects due to cosmic-ray viscosity and inertia, providing the
description of the evolution of the (momentum-) isotropic part of the
distribution of particles with a prescribed nonrelativistic Velocity. This
equation was improved to include the effect of an average magnetic field
embedded in the fluid, as shown in ref. 14 and 16, and coupled with the
momentum conservation equation of the fluid in ref. 15.
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The collision operator Q describes the scattering of cosmic rays (energetic
particles) in an astrophysical plasma, caused by random irregularities
(random spectrum of waves) in the ambient magnetic field.(8) This is the
reason why we refer to Q as a wave-particle collision operator. The quasi-
linear theory of plasmas(13) provides complex expressions for such operators.
Nevertheless, following ref. 8 and the previous works refs. 4 and 5, we shall
consider the relaxation time model (3), which��in spite of its simplicity��
contains most of the fundamental features of hydrodynamics. This state-
ment is a consequence of the formal results below.

We start by collecting some formal properties of the linear collision
operator Qu , u # Rd, defined by Qu( f )=Pu( f )& f (see refs. 4 and 5):

Lemma 1. For arbitrary u # Rd, f, g # D(Rd ), � # C�([0, �)),

(i) �( |v&u| ) is a collision invariant of Qu :

|
R d

Qu( f )(v) �( |v&u| ) dv=0 (7)

(ii) Qu is symmetric with respect to the L2(Rd )-inner product:

|
R d

Qu( f ) g dv=&|
R d

Qu( f ) Qu(g) dv (8)

(iii) Pu has the monotonicity property

a� f (v)�b O a�Pu( f )(v)�b (9)

Most of the main properties of the nonlinear operator Q are conse-
quences of this result:(4, 5)

Lemma 2. For arbitrary f # D(Rd ) with \f>0, � # C �([0, �)),

(i) �( |v&uf | ) and v are collision invariants of Q:

|
R d

Q( f )(v) �( |v&uf | ) dv=|
R d

Q( f )(v) v dv=0 (10)

(ii) the following H-theorem holds:

|
R d

Q( f ) f dv=&|
Rd

Q( f )2 dv�0 (11)
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(iii) Q( f )=0 iff there exist u # Rd and F # C�([0, �)), such that
f (v)=F( |v&u| ).

Remark 1. The statements of Lemmata 1 and 2 can be extended
for less regular functions by density arguments, whenever the involved
integrals are well defined. This is the way those results will be used in the
following.

A distinctive feature of the cometary flow model as compared to the
classical kinetic theory of gas dynamics(3) is that the set of collision
invariants (as well as the set of equilibrium distributions) is infinite dimen-
sional and depends on the distribution function through the mean velocity.
Contained in this set are 1, v, and |v|2=|v&uf | 2+2uf } v&|uf |2, implying
mass, momentum, and energy conservation. These properties are used in
refs. 4 and 5 for the derivation of macroscopic limits.

In the present paper, a global existence theorem for the problem (1)�(6)
is proved. Also the fundamental conservation and dissipation properties are
verified rigorously.

Theorem 1 (Existence for the nonlinear problem). Let f0 # L1(R2d ) &
L�(R2d ) be nonnegative, satisfy Ef0

# L1(Rd ), and

|
R d

f0(x&vt, v) dv�#K, T>0 x # K, t # [0, T ] (12)

for every compact K/Rd and T>0. Then, there exists a global, non-
negative weak solution f # L�((0, �); L1(R2d ) & L�(R2d )) of the problem
(1)�(6). For the mass, momentum, and energy densities given by (5),

\f , mf , Ef # L�((0, �); L1(Rd )) (13)

holds. The mean velocity and specific internal energy, given by (6), satisfy

uf # L�
loc([0, �); L2

loc(Rd )), ef # L�
loc([0, �); L1

loc(R
d )) (14)

Remark 2. Note that any continuous positive f0 # L1(R2d ) &
L�(R2d ) satisfies assumption (12). An example for an admissible initial
datum is the Gaussian f0(x, v)=exp(&|x| 2&|v|2).

Theorem 2 (Propagation of moments). Let f0 satisfy the assump-
tions of Theorem 1 and ( |v| p+|x|q) f0 # L1(R2d ) with 1�q�p. Then, solu-
tions of (1)�(6), as given in Theorem 1, satisfy ( |v| p+|x|q) f #
L�

loc([0, �); L1(R2d )).
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Theorem 3 (Conservation laws). Let the assumptions of Theorem 1
hold. Then, the following conservation laws hold for solutions f of (1)�(6):

\f \f0

|
R d \mf+ dx=|

Rd \mf0+ dx (15)

Ef Ef0

\f v
�t \mf++{x } |

Rd
f \ v_v + dv=0 (16)

Ef v |v|2�2

where (16) has to be understood in the sense of distributions. We also have
the entropy dissipation

d
dt |

R2d
f 2 dv dx=&2 |

R 2d
Q( f )2 dv dx (17)

and, if |x|2 f0 # L1(R2d ),

|
R 2d

f |x&vt| 2 dv dx=|
R2d

f0 |x| 2 dv dx (18)

This section is concluded by an outline of the remainder of the paper:
The following section contains an extension of the definition of the collision
operator to nonsmooth arguments as well as some stability properties. The
proof of Theorem 1 is carried out in Section 3. It relies on the construction
of an approximate solution, designed such that we can pass to the limit to
obtain a solution of the original problem. For this purpose, we use a com-
pactness argument based on the velocity averaging lemmas introduced
in ref. 9 and improved in ref. 10. These results have already been widely
exploited to deal with existence problems for nonlinear kinetic equations
as, for instance, in ref. 6 for the purpose of establishing global existence of
a solution to the Boltzmann equation, refs. 12 and 11 for the existence of
solutions to the BGK equation, or ref. 2 for the same purpose concerning
the radiative transfer equations. Section 4 is devoted to the proofs of
Theorems 2 and 3.

2. PROPERTIES OF THE COLLISION OPERATOR

We shall need a definition of Qu( f ) for nonsmooth functions u(t, x)
and f (t, x, v). We shall only be concerned with Pu( f ) in this section.
However, all the results trivially carry over to Qu( f )=Pu( f )& f.
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Let u: (0, �)_Rd � Rd be a Borelian function with |u|<� a.e. in
(0, �)_Rd and f # D((0, �)_R2d ). Then Pu( f )(t, x, v) is defined by (4)
for every (t, x) with |u(t, x)|<� and by Pu( f )(t, x, v)=0 otherwise. An
immediate consequence of this definition is the following lemma:

Lemma 3. Let u, u~ : (0, �)_Rd � Rd be Borelian functions with
|u|, |u~ |<� and u=u~ a.e. in (0, �)_Rd. Let f # D((0, �)_R2d ). Then
Pu( f )=Pu~ ( f ) a.e. in (0, �)_R2d.

Proof. Denote by N/(0, �)_Rd the set of measure zero where
u{u~ . Then Pu( f ){Pu~ ( f ) in a subset of N_Rd which is a set of measure
zero in (0, �)_R2d. K

Lemma 4. With the assumptions of the previous lemma on u
and f, with 1�p, q��, and with T>0, we have

&Pu( f )&Lq ((0, T ); L p (R2d ))�& f &Lq ((0, T ); L p (R2d ))

Proof. The inequality |Pu( f )| p�Pu( | f | p) is easily shown by an appli-
cation of the Ho� lder inequality for 1<p<� and obvious for p=1, �.
Integration with respect to v gives

&Pu( f )(t, x, } )&L p (Rd )�& f (t, x, } )&Lp (Rd ) (19)

implying the result. K

As a consequence of Lemma 4, Pu can be considered as a bounded
linear operator on Lq((0, T ); L p(R2d )) for every Borelian function u with
|u|<� a.e. in (0, T )_Rd. The final result of this section is concerned with
the stability of Pu( f ) with respect to u:

Lemma 5. Let f # Lq((0, T ); L p(R2d )) with 1�p, q<� and let
limn � � un=u in L1

loc((0, T )_Rd )d. Then

lim
n � �

Pun
( f )=Pu( f ) in Lq((0, T ); L p(R2d ))

Proof. By Lemma 4 and a density argument it is sufficient to carry
out the proof for test functions f # D((0, T )_R2d ). Furthermore, since for
such a test function

&Pun
( f )&L�((0, T )_R2d )�& f &L�((0, T )_R2d )

holds, it is sufficient to prove convergence in L1((0, T )_R2d ).
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The main difficulty of the proof results from the fact that even for a
test function f, Pu( f ) does not necessarily have compact support if u is
unbounded. In the basic estimate

|Pun
( f )(t, x, v)&Pu( f )(t, x, v)|�c( f ) |un(t, x)&u(t, x)| (20)

(which is an obvious consequence of the Lipschitz continuity of f ) the con-
stant c( f ) could be redefined as a function of (t, x) with compact support,
but it has to be chosen independently of v in general. Therefore (20) cannot
be used directly to prove the lemma.

Let K/(0, T )_Rd be a compact set in (t, x)-space such that supp( f )
/K_Rd. This obviously implies

supp(Pun
( f )), supp(Pu( f ))/K_Rd (21)

Also un converges to u in L1(K). Therefore a subsequence (again denoted
by un) converges to u a.e. in K. The Egoroff theorem implies for every =>0
the existence of a set A= /K with meas(K"A=)�= such that un � u
uniformly in A= . We also introduce the set

BM=[(t, x) # K : |u(t, x)|<M ]

It is easy to see that

meas(K"BM)�
1

M
&u&L1(K)

By the uniform convergence of un ,

|un |<2M in A= & BM

holds for n large enough. As a consequence, there exists a compact set
Kv /Rd with

supp(Pun
( f )(t, x, } )), supp(Pu( f )(t, x, } ))/Kv (22)

for (t, x) # A= & BM . By (21) we have

&Pun
( f )&Pu( f )&L1((0, T )_R2d )=|

Rd |K
|Pun

( f )&Pu( f )| dt dx dv

�A+B+C
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where the three terms on the right hand side correspond to the splitting
K=(A= & BM) _ (K"A=) _ (K"BM). In the estimation of A we use (22)
and (20):

A�|
Kv
|

A= & BM

c( f ) |un&u| dt dx dv�c1( f ) &un&u&L1(K)

For estimating B and C, (19) implies

B�2 |
Rd |K"A=

| f | dt dx dv�c2( f ) =

C�2 |
Rd |K"BM

| f | dt dx dv�c3(u, f )
1

M

Going to the limit n � � now gives

lim sup
n � �

&Pun
( f )&Pu( f )&L1((0, T )_R2d )�c2( f ) =+c3(u, f )

1
M

implying the sought for convergence result by = � 0 and M � �.
We recall that un is a subsequence of the original sequence. Con-

vergence of the full sequence, however, follows from the uniqueness of the
limit, which is a consequence of Lemma 3. K

3. THE EXISTENCE RESULT

We start with the formulation of a problem formally approximating
(1)�(6). For that purpose we define, for n # N, the velocity truncation

u(t, x), for |u(t, x)|<n, |x|<n

.n(u)(t, x)={n
u(t, x)

|u(t, x)|
, for |u(t, x)|�n, |x|<n (23)

0 for |x|�n

and consider the sequence of problems

�t f n+v } {x f n=Qn( f n) (24)

f n(0, x, v)= f0(x, v) (25)
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as an approximation of (1)�(6), with

Qn( f )=Q.n(uf )( f ) (26)

The following existence result holds:

Proposition 1 (Existence of an approximate solution). Let f0

satisfy the assumptions of Theorem 1. Then, for every n # N, there exists
a nonnegative, weak solution f n # L�((0, n); L1(R2d ) & L�(R2d )) of
(23)�(26) with Ef n # L�((0, n); L1(Rd )). The bounds for f n and Ef n in the
respective spaces are independent of n.

The proof relies on a fixed-point argument based on solving linearized
problems. Therefore we prove as a preliminary result existence for the
linear problem with given velocity in the projection operator:

Proposition 2 (Existence and uniqueness for the linear problem).
Let f0 satisfy the assumptions of Theorem 1 and let u # L�((0, �)_Rd )d

with &u&L�((0, �)_Rd )d=M. Then the problem

�t f +v } {x f =Qu( f ) (27)

f (0, x, v)= f0(x, v) (28)

has a unique nonnegative solution f # L�((0, �); L1(R2d ) & L�(R2d )) with

& f (t, } , } )&L1(R2d )=& f0&L1(R2d ) , & f (t, } , } )&L�(R2d )�& f0&L�(R2d ) (29)

Moreover, Ef # L�
loc([0, �); L1(Rd )), uf # L�

loc([0, �); L2
loc(Rd )) holds. The

bounds on Ef and uf in the respective spaces only depend on f0 and M.

Sketch of the Proof. Existence and uniqueness can be achieved by a
simple contraction-type fixed point argument (using lemma 4) that we omit
here. The inequalities

0� f (t, x, v)�& f0&L�(R2d )

follow by a standard iterative argument from the nonnegativity of f0 and
from the monotonicity property (9) of Pu . The mass conservation property
(29) follows from integration of (27) with respect to v, x, and t.

In order to prove the boundedness of Ef , we use the identity

|
Rd

Qu( f ) |v|2 dv=2u } (\f u&mf)
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which follows from Lemma 1. Formally multiplying (27) by |v|2�2 and
integrating with respect to x and v, we get

d
dt

&Ef &L1(Rd )=|
Rd

u } (\f u&mf ) dx�c(c+- 2 &Ef&L1(Rd ) )

with

c=M & f0&1�2
L1(R2d )

where the estimate follows from the Cauchy�Schwarz inequality

&mf &2
L1(Rd )�2 &\f&L1(Rd ) &Ef &L1(Rd )

Now the assertion of Proposition 2 on Ef is a consequence of the Gronwall
lemma.

By (30), to see that uf is well defined, we just need a lower bound on
the density \f . In order to find it, we use the following equivalent integral
representation of (27), (28), given by Duhammel's principle:

f (t, x, v)=e&tf0(x&vt, v)+|
t

0
es&tPu( f )(x&v(t&s), v, s) ds (31)

Now by (31) and assumption (12) we obtain

\f (t, x)�e&T#K, T>0, for x # K, 0�t�T (32)

for every compact K/Rd, and for every T>0.
Combining (30) and (32) gives uf # L�

loc([0, �); L1
loc(Rd )). The stronger

result of Proposition 2 follows from the local-in-x-version of (30),

\f |uf | 2�2Ef

the bound on Ef , and (32). K

The next step is the solution of the approximate problem (23)�(26).

Proof of Proposition 1. We are first concerned with the existence
proof. For each n # N fixed, we introduce the set

Sn=[u # L1((0, n)_Bn)d : |u|�n a.e. in (0, n)_Bn]

with Bn=[x # Rd : |x|<n]. Then, Sn is a closed, convex, and bounded
subset of L1((0, n)_Bn)d. Assuming extension by zero for x � Bn , every
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element of Sn can also be considered as an element of L1((0, n)_Rd )d.
With this convention, the operator .n , defined by (23), maps arbitrary
measurable velocity fields on (0, n)_Rd to Sn .

Now an operator T1 : Sn � L1((0, n)_Bn)d is defined in the following
way: For u # Sn (extended to (0, n)_Rd ), let f denote the solution of
(27)�(28), and let T1(u) be the restriction of uf to (0, n)_Bn . A fixed point
operator T: Sn � Sn is then defined by T(u)=.n(T1(u)). Obviously, fixed
points of T correspond to solutions of (23)�(26). Since .n : L1((0, n)_Bn)d

� Sn is continuous, the Schauder fixed point theorem can be applied to T,
if we can prove continuity and compactness of T1 .

We first prove the compactness property. For u # Sn , it is a conse-
quence of the boundedness of the solution f of (27), (28) in L�((0, �);
L1(R2d ) & L�(R2d )) that f is also bounded in L2((0, n)_R2d ). Since Qu is
a bounded operator on this space,

�t f +v } {x f # L2((0, n)_R2d )

follows. Therefore, a velocity averaging lemma(10) can be applied, giving

|
Kv

f |v| r dv # H 1�2((0, n)_Rd )

for every compact Kv /Rd. The uniform boundedness of Ef in
L1((0, n)_Bn) (see Proposition 2) implies that �Rd f |v| r dv is compact in
L1((0, n)_Bn) for 0�r<2.

Thus, the map from u # Sn to \f , mf # L1((0, n)_Bn) is compact. The
lower bound

\f�e&n#Bn , n>0, in (0, n)_Bn

now implies compactness of T1 .
To check its continuity, we consider a sequence uk # Sn converging to

u # Sn as k � �. We denote by fk and f the unique solutions of the linear
problem (27), (28) associated with uk and u, respectively. The uniform
boundedness result from Proposition 2 implies convergence of a sub-
sequence of fk to f� in L�((0, �)_R2d ) weak*. The continuity result from
Lemma 5 now implies that we can go to the limit in (27), (28) in the sense
of distributions. Now the uniqueness of the solution of the linear problem
gives f� = f and convergence of the whole sequence fk . Using the averaging
lemma and the boundedness of \f k

from below as above, we can go to the
limit k � � in uf k

=mfk
�\fk

, completing the proof of continuity of T1 . Now
an application of Schauder's fixed point theorem settles the existence result.
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It remains to prove the boundedness of Ef n . We proceed as in the
proof of Proposition 2 and integrate the product of (24) and |v|2 with
respect to v and x:

d
dt

&Ef n &L1(Rd )=|
R d

.n(uf n) } (\f n .n(uf n)&mf n) dx

The observation that .n(u)(t, x)=%(t, x) u(t, x) with 0�%�1 shows that
the right hand side is nonpositive, completing the proof. K

Now we are ready to prove the existence theorem.

Proof of Theorem 1. We carry out the limit n � � in (24), (25).
Extending f n by 0 for t # [n, �), Proposition 1 implies that a subsequence
of f n converges to a limit f in Lq

loc((0, �); L p(R2d ); weak) for every �>p,
q>1. As in the preceding proof, a velocity averaging lemma can be applied
to prove the convergence (up to a subsequence) of un :=uf n to uf in
L1

loc((0, T )_Rd ).
For a compact set K/(0, T )_Rd we use the Egoroff theorem as in

the proof of lemma 5 to deduce that (up to a subsequence) un converges
uniformly to uf in A=/K with meas(K"A=)�=. We also use the set

BM=[(t, x) # K : |uf (t, x)|<M ]

as in the proof of Lemma 5. Then

lim
n � � |

A= & BM

|.n(un)&uf | dt dx=0

since .n(un)=un on A= & BM for n large enough. On the other hand,

|
K"(A= & BM )

|.n(un)&uf | dt dx

�|
K"(A= & BM )

( |un |+|uf | ) dt dx

ww�
n � �

2 |
K"(A= & BM )

|uf | dt dx wwwww�
M � �, = � 0

0

implying convergence of .n(un) to uf in L1
loc((0, T )_Rd ).

Thus, by the continuity results in Lemmas 4, 5, we can go to the limit
in (24), (25) in the distributional sense. The bounds for the moments and
for the mean velocity are obtained by going to the limit in the corre-
sponding inequalities for the approximating problem. K
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4. PROPAGATION OF MOMENTS AND
CONSERVATION LAWS

For the proofs of Theorems 2 and 3 we shall need the following techni-
cal result:

Lemma 6. For any p�1 and for any nonnegative function f with
(1+|v| p) f # L1(Rd ), \f>0, we have

(i) \f |uf | p�|
Rd

|v| p f dv

(ii) |
R d

|v| p Puf ( f ) dv�Cp |
R d

|v| p f dv

for some positive constant Cp depending only on p.

Proof. (i) The Ho� lder inequality for the measure f dv gives

\f |uf |�|
R d

|v| f dv�\1�p$
f \|R d

|v| p f dv+
1�p

which is equivalent to the result ( p$ is the conjugate exponent of p).

(ii) In the following, C denotes various constants depending only
on p. For f # D(Rd ) with \f>0, we have

|v| p�C( |v&uf | p+|uf | p)

implying

|
R d

|v| p Puf ( f ) dv�C \|Rd
|v&uf | p f dv+\f |uf | p+

�C \|R d
|v| p f dv+\f |uf | p+

Here, the conservation property (7) has been applied, being justified since
f is smooth and has compact support. The proof is completed by an
application of (i). K

Now the statement that 1, v, |v|2 are collision invariants of Q can be
made rigorous:
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Corollary 1. For a solution f of (1)�(6) as given in Theorem 1, we
have

1

|
R d

Q( f ) \ v + dv=0

|v|2

With the help of Lemma 6, the boundedness of higher order moments
can be proved:

Proof of Theorem 2. We present a formal proof which can be com-
pleted by an appropriate smoothing. Setting g=(1+|x|q+|v| p) f, we have

�t g+v } {xg+ g=S=q(v } x) |x|q&2 f+(1+|x|q+|v| p) Puf ( f ) (33)

With

|v } x| |x|q&2�|v| |x| q&1�
|v|q

q
+

|x| q

q$

(where q$ is the conjugate exponent of q) and with Lemma 6 we obtain

|
Rd

|S | dv�C |
R d

g dv

Integration of (33) with respect to v and x now gives

d
dt |

R 2d
g dv dx�C |

R 2d
g dv dx

and an application, of the Gronwall lemma completes the proof. K

In the proof of Theorem 3 a classical dispersive lemma due to
Perthame(12) is used, which we recall for the sake of completeness:

Lemma 7. Assume g0 # L1(R2d ) and h # L�((0, T ); L1(R2d )). Then,
the solution g of

�t g+v } {xg=h, g(t=0)= g0

satisfies (1+|v| ) g # L1((0, T )_Kx_Rd ) for every compact set Kx of Rd.
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Proof of Theorem 3. Let us focus on the conservation of energy. The
other conservation laws are obtained similarly. In the weak formulation of
(1), (2),

|
�

0
|

R2d
f (�t,+v } {x,+Quf (,)) dv dx dt=|

R 2d
f0 ,(t=0) dv dx

we set ,(t, x, v)=|v|2 .(x�R) .(v�V ) %(t) with % # C �
0 ([0, �)), . # D(Rd ),

.( y)=1 for | y|�1. The bounds of Theorem 1 justify letting R � �:

|
�

0
|

R2d
( f |v| 2 .(v�V ) %$(t)+Q( f ) |v| 2 .(v�V ) %(t)) dv dx dt

=%(0) |
R2d

f0 |v|2 .(v�V ) dv dx

In the further limit V � � the second term on the left hand side vanishes
by Corollary 1, and total energy conservation (15) follows.

Now we remark that

|
Rd

v |v| 2 f dv # L1
loc([0, �)_Rd )

This is a consequence of Lemma 7. Choosing now a test function of the
form ,(t, x, v)=|v|2 .(v�V ) '(t, x) with ' # C �

0 ([0, �)_Rd ), and letting
V � �, we obtain the local version of conservation of energy.

For proving the entropy dissipation result (17), we note that
f # L�((0, �); L2(R2d )) holds. With the help of Lemma 4, this is sufficient
for proving that the H-theorem (11) holds. Let us now multiply the trans-
port Eq. (1) by 2 f. Since f and �t f +v } {x f belong to L�((0, �);
L2(R2d )), we have

(�t f +v } {x f ) 2 f =�t f 2+v } {x f 2

This can be easily justified by using, for instance, a convolution by an
approximation of unity and Friedrichs Lemma (see ref. 1, also ref. 7 and
the notion of renormalized solution). Now integration with respect to v and
x gives (17).

Finally, (18) is a consequence of the identity

|x&vt|2 (�t f +v } {x f )=�t( |x&vt|2 f )+v } {x( |x&vt|2 f )

and of the fact that |x&vt|2=|x|2&2t(x } v)+t2 |v| 2 is a collision invariant
of Q. K
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